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Executive Summary

For over twenty years, the U. S. Army Corps of Engineers (USACE) and the Virginia Port
Authority (VPA), representing the Commonwealth Secretary of Transportation, have
collaborated on projects key to port development that also preserve the environmental integrity
of both Hampton Roads and the Elizabeth River. The USACE and the VPA are working to
investigate channel deepening in this region to provide access to a renatigenof cargo ships
(e.g.,Panamaxclasg. The main goal of this project is itmvestigate the feasibility for Norfolk
Harbor channel deepening in the lower James and Elizabeth Bheessess trevironmental
impactof the shipping channels dredgimgAtlantic Ocean Channel, Thimble Shoal Channel,
Elizabeth River channel, and the Southern BraBgecifically, we support the request of

APl anning and Engineering Services {for Norfol
resolution hydrodynamic molileg to evaluate the change of hydrodynamics resulting from
Channel Deepening (2) assessment of waielity modeling using the Hydrodynamic
Eutrophication Model (HEM3D{3) conductinghe statistical measure of impacgtssulting from
Channel Deepening.

Virginia Institute of Marine Science (VIMS) team has applied a3D unstrucgried

hydrodynamic model (SCHISM, Zhang et al., 2016) in the study of impact of channel dredging
on hydrodynamicsn the project area. The model wadopted due to its flexible igding

systems used: hybrid triangulguadrangular unstructured grids in the horizoatal flexible

vertical coordinate system in the vertical (Zhang et al. 2015). High resolution 16ptés used

to faithfully resolve the channels and other importaatures such asnnelislands etc.

We first validate the modah the lower Chesapeake Bthat includes theroject areaunder the

exXxi sting c onThedimulated elevat®res sdefhérgged velocity, salinities, and
temperatures in the lav Bay, James River and Elizabeth River region have an averaged RMSE
of 6cm, 8cm/s, <2 ppt, €€ respectively, and the model captured key processes (salt intrusion,
periodic stratificatiordestratification) well.

The model is theapplied to study the respse from various scenarios under the channel
dredging projectGiventwo base conditions and three scenanidh each scenario built on
eitherBase 1 oBase 2altogether wehave conducted eight model runs. The base runare
(1) Base 1Current without project (2) Based future without projecincluding CIEE (Craney
Island Eastward Expansiohyilt out The threescenariosre(1) Norfolk Harbor channel
dredgingonly (2) Southern Branch channdtedgingonly, (3) both Norfok Harbor channel and
Southern Branch channétedging (se&igure 11) Comparisorof all of the scenarios with

0 B a scer 1&Bdemanstratdihe following characteristics

(1) the salinityincreaseon average of 0.6 pjpt Elizabeth Rivers the larg@st over the project
site. The maximum change, though, @ reach 2optwh en compar eimdJad o 6 Base
Marchin most parts of th&lizabethriver (cf. Fig. 33 &34);



(2) the salinity increase in the James River is up to 0.2 ppt on average;

(3) the increases are generally small (~0.1 ppt) in the réstveir Chesapeaki®ay (with a
distance exceeding ~3®n from the project ar@a

4when scenarios artheo#tmpscedatoos$Bheel 16on 08B
larger salinitymcreasé han t hos e ueitoltheadditional éffldcsso@EEILGI
out

(5) the salinity increase thesmallestwith only the Southern Brandieingdredged followed
by Norfolk Harbor channel dredging; the combined dredging in both cratesals to théargest
change.

Quantitatively the impact of dredging on the hydrodynamics is relatively minor and localized
over theproject site. Among the 3 regions,the salinity change is the largest in #eabeth
River, followed by James Riverlnd the lower Chesaglke Bay is the smallest in the cdmeth
Norfolk Harbor and Elizabeth River are chosen to be deepening

Vi



1. Background
The nature of global trade is changing and the shipping industry is in transformation from
traditional vessels to larger meghips.For example,ite Panama Canabw hasa third lane that
can accommodate megaips nearly three times larger than any Vesse has ever transited the
isthmus over the past century. America is taking a great stride in the international trade strategy
with the pursuit resulting from the expansion of the PanamalCHme Virginia Port Authority
(VPA) continually strives to mamize the efficiency of its present and future marine terminal
operations for the benefit of all citizens of the Commonwaed#lWirginia. The Panamaxlass
ships of today enter into Chesapeake Bay via channels with nkevagiths of less than 50 feet.
The VPA has a concern about the channel deepening necessary to accommodate these next
generation cargo ships (Pénama-ships), which are 1,200 feet in length and carry three
times the cargo ohe 965feetlong Panama shigglaider, 2015) These shipareable to reach
theU.S. East Coadtincethe completion of the Third Sef Locks Project at the Panar@anal
(Ison, 2015), project recently completed RD16. For over twenty years, the U. S. Army Corps
of Engineers (USACE) and the Virginia Port Aatity (VPA), representing the Commonwealth
Secretary of Transportation, have collaborated on projects key to port development that also
preserve the environmental integrity of both Hampton Roads and the Elizabeth River. The
selection of the psent desigrfior Craney Island Eastwakgixpansion (CIEE) and its legal
authorization were major milestones leading to the onset of the €diEruction. Building on
existing collaboration, the USACE and the VPA aogvworking to investigate channel
deepening in thisegion to provide access to a new generation of cargo ships.

Virginia Institute of Marine Science of the College of William and Mary has been actively
engaged with A0 activities.The numeical model known as HEMD (Hydrodynamic and
Eutrophication Modein 3 Dimensions) was developadd used in several key environmental
impact studies in the James and Elizabeth Rivers over the past two decades. It was first used to
assess the environmental impacts for highway crossing alternatives of the proposed third
crossing of Hampton Roads (Boon et al., 1999). After refining the Elizabeth River portion of the
model grid to a resolution of 123 m, HEBD was utilized to determine both global (i.e., far

field) and local environmental impacts of each of a seriemndféxpansions for Craney Island

(Wang et al., 2001). The current project is a natural continuation of the previous efforts.

To investigate the feasibility for Norfolk Harbor channeégening in the lower James and
Elizabeth Rivers, one of the key servioéshe project is to evaluate the impacts of the shipping
channels dredging for Atlantic Ocean Channel to 55 feet (from 50 feet), Thimble Shoal Channel
to 55 feet (from 50 feet), Elizabeth River (north of Lambert Point) to 50 feet (from 45 feet) and
the Suthern Branch (north of the 164 Bridge)about50/45/45 feetn its three reaches

(Elizabeth River Reacmiddle Reach and lower Regch theoretical terms, the shipping

channel dredging will result in enhancement of estuarine gravitational circulation, accentuate the
tidal and wind wave influence upstream, and affect the ecosystem dynamics in the lower Bay,
particularly, dissolved oxyan (DO) in the James River and Elizabeth River. The real question is
how much is that impact? Can it be quantitatively evaluated? Can the risk be measured
temporally and spatially? VIMS scientists are working with engineers of Moffatt and Nichol and

1



the Nafolk District of the U. S. Army Corps of Engineers to evaluate the impact of channel
deepening on the dynamics and dissolved oxygen (DO), and the flushing capabilities of the
Lower James and Elizabeth Rivers, and to provide statistical measures tdlessapsact
resulting from channel deepening both locally and globally. This document provides key
findings of thehydrodynamianodel results dated to environment assessment

2. The SCHISMmodel set-up and observation data

The unstructuredrid (UG) SCHI3 model (Zhang et al. 2016) is used to simulate the
circulation in lower Chesapeake Bay that includes the project sites (Atlantic Channel, Thimble
Shoal,Newport News ChanneElizabeth River channel). The UG h24520nodes 40593

mixed triangulasquadangularelements in the horizontal dimension (Fig.ith resolution
varying from 15m to 6.3k (Fig. 2), and finer resolution used in the lower Baynes River
Elizabeth River regionThe flexibility providedby the UG model allows us to simulate the
processes in the entire Bay and continental shelf as a whole, thus greatlijyséimg the
boundary conditiorfB.C.) requirement. Alexible LSC (Localized Sigma Coordinates with
Shaved Cellsyertical grid (Zhang et al. 2015 usedhat efficiently covers epths from deefo
shallow regions, with a maximum of 8Vels usedt the maximum depth of ~86 m (found
near the continental shddfeal), 29-41 levels for the sipping channel, and minimum oflévels
for the shdbw area. On average there ard@&Ils used irthe vertical. The use dtexible
horizontal and vertical grids ensatéat the gravitational circulatiof2-layer exchange flowis
accurately and efficiently represented in the 3D mote.mainbathymetry source we used is
from FEMA (Blanton et al. 2011), with further modificatiopsovided byMoffatt and Nichol

and the NorfollDistrict of the U. S. Army Corps of Enginediiacluding the Navy dredging that
has been completed)

The model is forcedy USGSmeasured flows from the 7 majwibutaries of the Bay
(Susquehanna, Patuxent, Potomac, Rappahannock, York, James, and Ghapthalairwater
interface, the model is forced by the wind, atmospheric pressure, and heat fluxes predicted by
NARR (https://www.ncdc.noaa.gov/datecess/moeldata/modedatasets/nortamerican
regionatreanalysisnari). At the outer ocean boundathge elevation B.C. is obtained from
inversedistance interpolated values from two tide gauges at Duck, NC and Lewesh®E. T
salinity and temperatu® . C . dngerpaated from HYCOMHKycom.org), and in addition, a
20-km nudging zon@aear the ocean boundasyused where the salinity and temperature are
relaxed to corresponding HYCOM values in order to preventternyg drift, with a maximum
relaxationperiodof 1 day.

For model validation, we use NOAA tide and current data for the lower Bay
(http://tidesandcurrents.noaa.gpand salinity and temperature observation from the hhpnt
surveys conducRrog.am by EPAGs Bay
(http://www.chesapeakebay.net/data/downloads/cbp _water_quality database 1989. present
Years 2012013 was chosen by the project team due to better availability of observational data.



http://tidesandcurrents.noaa.gov/
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Figure 1. SCHISM grid for Chesapeake Bay and its adjacent shelfb-e) show zoorrin near Eliz Elizabeth
River, mouth of Elizabeth River, lower Bay and JamesElizabeth Rivers, and Thimble Shoal respectively.
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Figure 2: Histogram of grid resolution (shownas equivalentdiametersof elements) About 40% of the
elements have resolution finer than 250m.



3. The validation of SCHISMfor base condition

We first validate the model under the existing (i.e.;pngect)d Ba s e 1 6for@0dhThe t i on
elevation comparison is presentediforms:tidal harmonics (Fig. 3 subtidal time series (Fig.

4) and total &vation (Fig. 3. The predicted major M2maplitude and phases are within 1cm and
1.5° of the observed values (Fig&3Table 1), and theMean Absolute ErrordM A E Hfar the
subtidal elevaton are no more than 4cm (Fig, 4hdicating a satisfactory moldskill.

The comparison of velocity profiles alMDCP stations is shown in Fig. @he twelayer

structure is well captured by the model, although the model occasionallyestoheates the
surface velocity magnitude. The correlation coefficients excekedt@ll stations, and are mostly
between 0.8.95. The comparison of deptiveragedlongchanneblelocity also shows
satisfactory skill, with an averag&botMeanSquareError RMSE) of 8cm/s (Fig. 7.

For brevity, the salinity and temperatwadidationsare preseted in aggregate format. Fig. 8
shows the seasonally averaged salinity profiles along a channel transect from lower Bay into
James Rer. In this report salinities are presented in either PSU (practical salinity unit) or ppt
(parts pe thousand), and the two units are essentially the same for our purpesgbserved
averages at stations are plotted as circles overlaid on top of neabealues in the form of a
Hovmoller diagram: the disappearance of the data would indicate a paéeefl he x-axis of

the Hovmoller diagram represents the alehgnnel distance (measured from an arbitrary
location), and thg-axis is the depth. The continuous colors represent the averaged model
salinities along the channel, and the colored ciraleshe average observed saliniti€ke

model tends toverintrude near station But generally captures the temporal and spatial
variability and stratificatiorwell.

Theoverall statistics of the salinity and teamptureare summarized in tiferm of taiget

diagrams (Fig. 9 and 10The x-axis shows the unbiased RMSE (i.e. with mean removed) scaled

by the standard deviation of the observation, with positive vaix€3 (hdicating that the model

standard deviation ovasstimates that of the observationdavice versa. Thg-axis shows the

model bias scaled by the standard deviation of the observattore RMSEOGs appe al | w
and 2C, which are small compared to thtandard deviatioof thesalinity and temperatuata

used to validate the model

Based on these results, the model is deemed to have sufficient skill and can be used to assess the
impact of channel dredging



(b)

Amplitude : M2

0.6
E
DL 04
g =] J ® &
=1
Kiptopeke 5 o2
8 (|
\ | 0 .
[ o CBBT Kiptopeke  Swells Money Point
Amplitude: N2
0.6
CBBT =
s g 04
. 2
— =
\ £ 02
\ [al [al (O] ™
\ 0
\‘ CBBT Kiptopeke Swells Money Point
\ Amplitude: 01
A\
\
- 06
©E
3 0.4
2
2
E o2
o o] sl ® &
CBBT Kiptopeke Swells Money Point

phase (degree) phase (degree)

phase (degree)

8
o

N
~
o

-
(=3
o

w
o

8
o

N
=
o

-
@
=l

w
o

&
=]

N
~
o

-
@
=l

w
o

o

Figure 3: Comparison of tidal congituents at 4 lower Bay gauges shown in (a).

CBBT R?=0.93; MAE=0.031 m
T T

Phase: M2
™
—— observation
—  modeled
. = = &
CBBT Kiptopeke Swells Money Point
Phase: N2
= ]
inl Ll
CBBT Kiptopeke Swells Money Point
Phase: 01
I [l ® ®
CBBT  Kiptopeke  sSwells Money Point

= ©  Observation
= 05 Model
2
g o
&2
@
05 | | | | | | |
0 50 100 1580 200 250 300 350
Days from 2011-01-01
1 Kiptopeke R280.92: MAE=0.039m
I T T
E
=
2
®
-3
k]
@
05 \ ! \ | L ! !
Q 50 100 150 200 250 300 350

Days from 2011-01-01
Sewells Rz=0.95; MAE=0.033 m
I T

elevation (m)

| 1

150 200
Days from 2011-01-01

MoneyPt R?=0.94; MAE=0.037 m

elevation (m)
o
1
|

Figure 4: Comparison of subtidal signals (with cut-off frequency at 30 hours)at 4 lower Bay gaugesshown

150 200
Days from 2011-01-01

in Fig. 3a. The model curves mostly coincidewith the observation curves, with only minor deviations on, e.g.,

Day 350 etc.



CBBT Kiptopeke

Kiptopeke (b) : (©) ‘
(a) : 157 DATA 1 1
1 Base 1 I& o501 Aoa i b f 1
| 0.5 0 \ A \
0 TR I v | v v .
’ CBBT -05 ]
Sewells ’ 0.5
{ 4 c -1 1
:i A N " s N . N . .
1 235 240 245 182 184 186 188 190
Days from 2011-01-01 Days from 2011-01-01
Sewells MoneyPt
s = 15 ‘ ‘
Money Point (C) 15 (d) 1
a 1r 4 !
/ﬁ . I
{ ~— 05h A 1 " 05 0 P i
[ ~— A f
0 v ¢ M y 5‘ b '
‘ ' 05 L 1
0.5
-1 i
24 26 28 30 32 34 36 72 74 76 78 80 82

Days from 2011-01-01 Days from 2011-01-01

Figure 5: Comparison oftotal elevations at 4 lower Bay gauges shown in (a).

Table 1: Comparisons of (a) amplitudes and (b) phases at 4 stations in the lower Bay.

(a) Amplitude (m)

M2 N2 01
Model Obs Model Obs Model Obs
CBBT 0.3937 0.3766 0.1052 0.1007 0.04338 0.04317
Kiptopeke 0.397 0.3829 0.104 0.09987 0.04702 0.04591
Sewells 0.3569 0.3594 0.09343 0.09388 0.03658 0.03944
Money Pt 0.3934 0.4098 0.08854 0.09586 0.03768 0.04266
(b) Phase (degree)
M2 N2 01
Model Obs Model  Obs Model  Obs
CBBT 3509 352.4 335.2 336.1 204 200
Kiptopeke 4.242 4.384 347.9 348 212.8 206.4
Sewells 18.06 17.89 24758 82732 213.1 2145
Money Pt 24.2 24.97 6.4 8.331 2114 210.3
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Velocity along flood direction(m/s): c¢b0601, 07/01/2011 - 08/01/2011, Flood Dir.=281 deg ADCP Base 1
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Figure 6: Comparison of along-channelvelocity profiles at 4 NOAA stationsat multiple depths. (a) Station
location; (b) CB0102; (c) CB0301; (d) CB0402; (e) CBO60OD.ADCPS6 i's the observed veloci
model result.
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Figure 7: Comparison ofdepth-averagedvelocity at the 4 ADCP stationsshown in Fig. 6a6 ADCP6 i s t he
observed velocity and 6éBased6 is the model resul t.
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Figure 8: Comparison of averaged salinity profilesin 2011along a transect locationin the JamesRiver shown
in (a). (b) From January to Mar ch; (c) April to June; (d) July to September; (e) October to Decembehe
filled colors are model results and the circles represent thobservation.
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Figure 9: Target diagrams of salinity skill for (a) lower Bay; (b) James River; (c ) Elizabeth River.
The left panels show the bottom salinity skill and the right panels show the surface salinity skilthe
x-axis shows the unbiased RMSE (i.e. with mean removed) scaled by the standard deviation of the
observation, with positive valuesX>0) indicating that the model standard deviation ovetestimates
that of the observation, and vice versa. Thg-axis shows themodel bias scaled by the standard

deviation of the observation.
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Figure 10: Target diagrams of temperature skill for (a) lower Bay; (b) James River; (¢ Elizabeth River.
See Fig. 9 for detailed exjanations.

4. The scenarios runs results

All scenarios considered in this projece listed in Figure 1IThe main differences between

6Base 16 (existing condition) and 6Base 206 (f
EastwardexpansionCIEE) builtout and remwaal of NIT piers near the entrance to Elizabeth

River. S-téféddiahd &@He based on Base 1, with dr
68060 is essentialld ahd.omdiimialta re2ny oS a@Bdavbos
are based oBase 2, with dredging in different stretches.

To assess the salinity changes present the averaged differences for bottom and surface

salinity, both in plan view and also along 2 channel transects. Time series of comparisons can be

found in project aftive. We firstc o mpar e all scenarios to O6Base 1
from 201062013 Note that itmightb e mor e appropri ate to compare
scenar i e2s6 (ee.cg. ,t o03Base 2, but we heesooBease 1 a

can see the changes in each scenario from the current con8itidning sothe comparisons

with Base 2 can al so behednfteredéoBémee 20 0d 4
[ 62466 Bas ke[ AB®d5 é B2 6 eFigl3d dIsp shows direct comparisine t we2dh 0 *
scenarios and Base 2.

Between Base 2 and Base Igsnhof larger salinity differences occur near the dredged access

channel (from ~5m to ~15m); salinity differences are much smaller else(wieigptor les$

(Fig. 12. As in all scenarios, the bottom salinity exhibits more channelized pattern than the

surface salinity.

For the rest of comparisons, wetetha s ¢ e nad i (oveh e2%shovwsmallest changes

from 0¢,Bafsoel 1106we d -Xd6s; esrcaeraXadr,d owstbi 6c3ihe batbhymeétry n e

c hange s-X& raonr®d ,0034hblargest changesr o m 0 ([Bigss 1818)1Salinity

increase$ r om sce2néar(iwhseréeY Y=3, 4, 5) areldsdheger t han
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former also incorporatine bathymetry changes near the entrance of Elizabeth River etc.
Therefore the largestchges( f r o m OGaBraes ef olubn)d -2 ®@. scenari o 05

Thesalinity increasealong 2 alongchannel transects in James and Elizabeth Rivers reveal that
the gravitationatirculation is generally enhanced with channel dredging, especially so near the
mesohaline region@-igs. 1932). Since the strength of the gravitational circulation is a function
of freshwater inflow, seasonal variabiliy salinity changes argeen in Ktransects This is
especially obvious in Elizabeth Rivavhere the largest increas#sl-2 pptare foundn most

parts of Elizabeth Riveturingwinter and spring months witarge river discharge from

upstream oflames Rive(DecJan,April-May). As a result, the salt intrusiona ship channel

from the bottom layer is the strongest which combined with freshwater dischargp beth the
horizontal and vertical salinity gradienthe differences in the salinity increase over time
suggest that thiacrease isorrelated tostratification; in theasymptoticcase of no freshwater
inflow/stratification, channel deepening would heddto any change in salinity as the water is
uniformly of marine origin This seasonasalinity increasean change thiecation of the limit

of salt ntrusion and turbidity maximum and enhance the flushing timmeaigh he strengthening

of the gravitational circulatioand thus impact the water quality (c.f. the water quality
assessment report).

It should be emphasizéidat the salinity increases are mostly confined in the vicinity of the
project arean the lower James River and Elizabeth Riaed the impact on the rest of the Bay is
much smaller (<0.ppt). The largest change is found in Elizabeth Rifempeciallyduring

spring, winter andhigh flow months), followed by lower James Rivandoutside these regions
the changes amostlynegligible (Fig. 12-18). Similar pattern may be inferred for DO as the
latter is closely related to the density stratificatdfhenthe Southern Branch is dredgek t
salinity changes in the Elizabeth River are foumtludingall the way upstrearaf the Suthern
Branch(e.g., Figs. 18, 32uggesting a ratherfefient connectivity withthe James River.

Theoverall statistics ofainity changes in the 3 regioasesummarizedn Figs. 33& 34. In
general, the 3 scenarios built on O6Base 26 re
6Bas€ondi stent with the results abéohowedbyt he s al
0X06 aXdThé maxi mum c h a-@ g&lizabsth Riverusi®.8ppti(bnt cai 5

reach 2 ppt as mentioned abavi)e 2% largest increase is found in the James River (~0.2 ppt).

The smallest increase is found in the lower Bay,amth ~0.1 ppton averageTo put these

values in perspectiyvéhe natural variability in salinity ilower Bay, James River and Elizabeth

River, expressed as the standard deviations of the observed salinity, are 3, 2.4 and 2.3 ppt
respectivelyWe also remark that even the largest increase in salinity is within the model

uncertainty (since the RMSE is ~2ppihe fact that the largestlative change occurs in the

Elizabeth River is not surprising because the bathymetry/geometry alteratiogliedtest at

CIEE.

This report did not consider the impact of proposetcBossing orfiFuture Without Project
condition However, we are engaged in another project that assesses the impact of pmaposed 3
crossing in the lower Hampton Roads area, ande$idts also suggest only localized impact (up
to 1.5 ppt) near the crossings and minor impact (~0.1 ppt) in all areas 4 km away from the new
crossingsOn a global level, th@5th percentile valisof the changes in hydrodynamic variables
are shown to beithin 2% of the existing condition, thus suggesting a relatively minor impact.
Therefore it seems reasonable to exclud&theCrossing detail from th@uture Without

Projecb condition
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Runs

Scenario

Description

" Norfolk
Harbor
Deepened

So Branch
Deepened

1- Baseline
— Existing
Conditions

Current Without-project conditions/Baseline
Includes:
#  CIEE with the 2 cross dikes (as is conditions)— no fill
between the dikes, or any dredging of the access
channel

Mo

Mo

2 -Baseline -
Future
Without
Project
Conditions

Future without-project
Includes consideration of:
*  CBBT —TsC parallel tunnel
*+  HRBT — parallel tunnel
+ 3~ Crossing/ Patriots Crossing
*  NIT Piers 1 and 2 removed, with dredged area to -50°
e CIEE full build out
MNote: VIMS will provide memo/input detailing how above is
being taken into consideration.

Mo

Mo

31

Exist Conditions with deepened NH channel

With Project Scenario that includes a deepening of the Norfolk
Harber and Channels without the So Branch of the Elizabeth
River, using existing conditions in Run 1.

Yes

No

3-2

Future Conditions with deepened NH channel

With Project Scenario that includes a deepening of the Norfolk
Harbor and Channels without the So Branch of the Elizabeth
River deepened, using future conditions noted in Run 2.

Yes

Mo

4-1

Exist Conditions with deepened $B channel

With Project Scenario that includes a despening of the So
Branch of the Elizabeth River without the Norfolk Harbor and
Channels using existing conditions in Run 1.

Mo

Yes

4-2

Future Conditions with deepened SB Channel

With Project Scenario that includes a despening of the So
Branch of the Elizabeth River without the Norfolk Harbor
deapened, using future conditions noted in Run 2.

Mo

Yes

5-1

Exist Conditions with deepened NH & 5B channels

With Project Scenario that includes a despening of both the
Morfolk Harbor and Channels and the So Branch of the Elizabeth
River using existing conditions in Run 1.

Yes

Yes

5-2

Future Conditions with deepened NH & 5B Channel

With Project Scenario that includes a deepening of both the So
Branch of the Elizabeth River and the Norfolk Harbor, using
future conditions noted in Run 2.

Yes

Yes

Figure 11: Description of simulation scenarios.
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Figure 12: Time-averaged salinity differencegfrom 2010-2013)between Base 2 and Base 1 at (a) bottom and
(b) surface.
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surface.
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Figure 15: Time-averaged salinity differenceb et ween SténandoBade 1 at (a) botto
surface.
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Figure 16: Time-averaged salinity differences between Scenarin£26 and Base 1 at (a) botto
surface.
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surface.
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Figure 19: Averaged salinity differences (at surface and bottompetween Base 2 and Basedlong a transect
from lower Bay into James River. See the®ipanel for the transect location andcorresponding observation
stations. Differences are shown every 3 months and the averaging is done from 2€2@1 3.
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Figure 20: Averaged salinity differences (at surface and bottompetween Base 2 and Basedlong a transect
from Elizabeth River into James River. See thesipanel for the transect location andcorresponding
observation stations. Differences are shown every 3 months.
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Figure 21: Averaged salinity differences (at surface and bottomp e t we-e @ @a8d Base 1 al

from lower Bay into James River.SeeFig. 19for the transect location Differences are shown every 3 months.
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Figure 22: Averaged salinity differences (at surface and bottom) betweei-d 6nd Base 1 along a transect
from Elizabeth River into James River.SeeFig. 20for the transect location Differences are shown every 3
months.
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