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Executive Summary

For over twenty years, the U. S. Army Corps of Engineers (USACE) and the Virginia Port
Authority (VPA), representing the Commonwealth Secretary of Transportation, have
collaborated on projects key to port development that also preserve the environmental integrity
of both Hampton Roads and the Elizabeth River. The USACE and the VVPA are working to
investigate channel deepening in this region to provide access to a new generation of cargo ships
(e.g., Panamax-class). The main goal of this project is to investigate the feasibility for Norfolk
Harbor channel deepening in the lower James and Elizabeth Rivers and assess the environmental
impact of the shipping channels dredging in Atlantic Ocean Channel, Thimble Shoal Channel,
Elizabeth River channel, and the Southern Branch. Specifically, we support the request of
“Planning and Engineering Services for Norfolk Harbor” in three areas: (1) using high-
resolution hydrodynamic modeling to evaluate the change of hydrodynamics resulting from
Channel Deepening (2) assessment of water quality modeling using the Hydrodynamic
Eutrophication Model (HEM3D) (3) conducting the statistical measure of impacts resulting from
Channel Deepening.

Virginia Institute of Marine Science (VIMS) team has applied a3D unstructured-grid
hydrodynamic model (SCHISM, Zhang et al., 2016) in the study of impact of channel dredging
on hydrodynamics in the project area. The model was adopted due to its flexible gridding
systems used: hybrid triangular-quadrangular unstructured grids in the horizontal and flexible
vertical coordinate system in the vertical (Zhang et al. 2015). High resolution (up to 15m) is used
to faithfully resolve the channels and other important features such as tunnel islands etc.

We first validate the model in the lower Chesapeake Bay that includes the project area, under the
existing condition (‘Basel’). The simulated elevations, depth-averaged velocity, salinities, and
temperatures in the lower Bay, James River and Elizabeth River region have an averaged RMSE
of 6cm, 8cm/s, <2 ppt, <2°C respectively, and the model captured key processes (salt intrusion,
periodic stratification-destratification) well.

The model is then applied to study the response from various scenarios under the channel
dredging project. Given two base conditions and three scenarios with each scenario built on
either Base 1 or Base 2, altogether we have conducted eight model runs. The two base runs are
(1) Base 1- Current without project (2) Based 2- future without project including CIEE (Craney
Island Eastward Expansion) built out. The three scenarios are (1) Norfolk Harbor channel
dredging only (2) Southern Branch channel dredging only, (3) both Norfolk Harbor channel and
Southern Branch channel dredging (see Figure 11). Comparison of all of the scenarios with
‘Base 1’ or ‘Base 2’ demonstrates the following characteristics:

(1) the salinity increase on average of 0.6 ppt in Elizabeth River is the largest over the project
site. The maximum change, though, can and reach 2 ppt when compared to ‘Base 1’ in Jan-
March in most parts of the Elizabeth river (cf. Fig. 33 &34);



(2) the salinity increase in the James River is up to 0.2 ppt on average;

(3) the increases are generally small (~0.1 ppt) in the rest of lower Chesapeake Bay (with a
distance exceeding ~30 km from the project area);

(4) when scenarios are compared to ‘Base 1°, the 3 scenarios built on ‘Base 2’ generally result in
larger salinity increase than those built on ‘Base 1’ due to the additional effects of CIEE built
out;

(5) the salinity increase is the smallest with only the Southern Branch being dredged, followed
by Norfolk Harbor channel dredging; the combined dredging in both channels leads to the largest
change.

Quantitatively, the impact of dredging on the hydrodynamics is relatively minor and localized
over the project site. Among the 3 regions, the salinity change is the largest in the Elizabeth
River, followed by James River, and the lower Chesapeake Bay is the smallest in the case both
Norfolk Harbor and Elizabeth River are chosen to be deepening.

Vi



1. Background
The nature of global trade is changing and the shipping industry is in transformation from
traditional vessels to larger mega-ships. For example, the Panama Canal now has a third lane that
can accommodate mega-ships nearly three times larger than any vessel that has ever transited the
isthmus over the past century. America is taking a great stride in the international trade strategy
with the pursuit resulting from the expansion of the Panama Canal. The Virginia Port Authority
(VPA) continually strives to maximize the efficiency of its present and future marine terminal
operations for the benefit of all citizens of the Commonwealth of Virginia. The Panamax-class
ships of today enter into Chesapeake Bay via channels with navigable depths of less than 50 feet.
The VPA has a concern about the channel deepening necessary to accommodate these next
generation cargo ships (Post Panamax-ships), which are 1,200 feet in length and carry three
times the cargo of the 965-feet-long Panama ships (Haider, 2015). These ships are able to reach
the U.S. East Coast since the completion of the Third Set of Locks Project at the Panama Canal
(Ison, 2015), a project recently completed in 2016. For over twenty years, the U. S. Army Corps
of Engineers (USACE) and the Virginia Port Authority (VPA), representing the Commonwealth
Secretary of Transportation, have collaborated on projects key to port development that also
preserve the environmental integrity of both Hampton Roads and the Elizabeth River. The
selection of the present design for Craney Island Eastward Expansion (CIEE) and its legal
authorization were major milestones leading to the onset of the CIEE construction. Building on
existing collaboration, the USACE and the VPA are now working to investigate channel
deepening in this region to provide access to a new generation of cargo ships.

Virginia Institute of Marine Science of the College of William and Mary has been actively
engaged with VPA’s activities. The numerical model known as HEM-3D (Hydrodynamic and
Eutrophication Model in 3 Dimensions) was developed and used in several key environmental
impact studies in the James and Elizabeth Rivers over the past two decades. It was first used to
assess the environmental impacts for highway crossing alternatives of the proposed third
crossing of Hampton Roads (Boon et al., 1999). After refining the Elizabeth River portion of the
model grid to a resolution of 123 m, HEM-3D was utilized to determine both global (i.e., far
field) and local environmental impacts of each of a series of land expansions for Craney Island
(Wang et al., 2001). The current project is a natural continuation of the previous efforts.

To investigate the feasibility for Norfolk Harbor channel deepening in the lower James and
Elizabeth Rivers, one of the key services of the project is to evaluate the impacts of the shipping
channels dredging for Atlantic Ocean Channel to 55 feet (from 50 feet), Thimble Shoal Channel
to 55 feet (from 50 feet), Elizabeth River (north of Lambert Point) to 50 feet (from 45 feet) and
the Southern Branch (north of the 164 Bridge) to about 50/45/45 feet in its three reaches
(Elizabeth River Reach, middle Reach and lower Reach). In theoretical terms, the shipping
channel dredging will result in enhancement of estuarine gravitational circulation, accentuate the
tidal and wind wave influence upstream, and affect the ecosystem dynamics in the lower Bay,
particularly, dissolved oxygen (DO) in the James River and Elizabeth River. The real question is
how much is that impact? Can it be quantitatively evaluated? Can the risk be measured
temporally and spatially? VIMS scientists are working with engineers of Moffatt and Nichol and
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the Norfolk District of the U. S. Army Corps of Engineers to evaluate the impact of channel
deepening on the dynamics and dissolved oxygen (DO), and the flushing capabilities of the
Lower James and Elizabeth Rivers, and to provide statistical measures to assess the impact
resulting from channel deepening both locally and globally. This document provides key
findings of the hydrodynamic model results related to environment assessment.

2. The SCHISM model set-up and observation data

The unstructured-grid (UG) SCHISM model (Zhang et al. 2016) is used to simulate the
circulation in lower Chesapeake Bay that includes the project sites (Atlantic Channel, Thimble
Shoal, Newport News Channel, Elizabeth River channel). The UG has 24520 nodes, 40593
mixed triangular-quadrangular elements in the horizontal dimension (Fig. 1), with resolution
varying from 15m to 6.3km (Fig. 2), and finer resolution used in the lower Bay-James River-
Elizabeth River region. The flexibility provided by the UG model allows us to simulate the
processes in the entire Bay and continental shelf as a whole, thus greatly simplifying the
boundary condition (B.C.) requirement. A flexible LSC? (Localized Sigma Coordinates with
Shaved Cells) vertical grid (Zhang et al. 2015) is used that efficiently covers depths from deep to
shallow regions, with a maximum of 80 levels used at the maximum depth of ~3600 m (found
near the continental shelf break), 29-41 levels for the shipping channel, and minimum of 5 levels
for the shallow area. On average there are 28 levels used in the vertical. The use of flexible
horizontal and vertical grids ensures that the gravitational circulation (2-layer exchange flow) is
accurately and efficiently represented in the 3D model. The main bathymetry source we used is
from FEMA (Blanton et al. 2011), with further modifications provided by Moffatt and Nichol
and the Norfolk District of the U. S. Army Corps of Engineers (including the Navy dredging that
has been completed).

The model is forced by USGS-measured flows from the 7 major tributaries of the Bay
(Susquehanna, Patuxent, Potomac, Rappahannock, York, James, and Choptank). At the air-water
interface, the model is forced by the wind, atmospheric pressure, and heat fluxes predicted by
NARR (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-
regional-reanalysis-narr). At the outer ocean boundary, the elevation B.C. is obtained from
inverse-distance interpolated values from two tide gauges at Duck, NC and Lewes, DE. The
salinity and temperature B.C.’s are interpolated from HYCOM (hycom.org), and in addition, a
20-km nudging zone near the ocean boundary is used where the salinity and temperature are
relaxed to corresponding HYCOM values in order to prevent long-term drift, with a maximum
relaxation period of 1 day.

For model validation, we use NOAA tide and current data for the lower Bay
(http://tidesandcurrents.noaa.gov), and salinity and temperature observation from the monthly
surveys conducted by EPA’s Bay Program
(http://www.chesapeakebay.net/data/downloads/cbp_water_gquality database 1984 present).
Years 2010-2013 was chosen by the project team due to better availability of observational data.



http://tidesandcurrents.noaa.gov/
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Figure 1: SCHISM grid for Chesapeake Bay and its adjacent shelf. (b-e) show zoom-in near Eliz Elizabeth
River, mouth of Elizabeth River, lower Bay and James-Elizabeth Rivers, and Thimble Shoal respectively.
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Figure 2: Histogram of grid resolution (shown as equivalent diameters of elements). About 40% of the
elements have resolution finer than 250m.



3. The validation of SCHISM for base condition

We first validate the model under the existing (i.e., pre-project) ‘Base 1’ condition for 2011. The
elevation comparison is presented in 3 forms: tidal harmonics (Fig. 3), sub-tidal time series (Fig.
4) and total elevation (Fig. 5). The predicted major M2 amplitude and phases are within 1cm and
1.5° of the observed values (Fig. 3 & Table 1), and the Mean Absolute Errors (MAE’s) for the
sub-tidal elevation are no more than 4cm (Fig. 4), indicating a satisfactory model skill.

The comparison of velocity profiles at 4 ADCP stations is shown in Fig. 6. The two-layer
structure is well captured by the model, although the model occasionally under-estimates the
surface velocity magnitude. The correlation coefficients exceed 0.7 at all stations, and are mostly
between 0.8-0.95. The comparison of depth-averaged along-channel velocity also shows
satisfactory skill, with an averaged Root-Mean-Square-Error (RMSE) of 8cm/s (Fig. 7).

For brevity, the salinity and temperature validations are presented in aggregate format. Fig. 8
shows the seasonally averaged salinity profiles along a channel transect from lower Bay into
James River. In this report salinities are presented in either PSU (practical salinity unit) or ppt
(parts per thousand), and the two units are essentially the same for our purpose. The observed
averages at 6 stations are plotted as circles overlaid on top of modeled values in the form of a
Hovmoller diagram: the disappearance of the data would indicate a perfect score. The x-axis of
the Hovmoller diagram represents the along-channel distance (measured from an arbitrary
location), and the y-axis is the depth. The continuous colors represent the averaged model
salinities along the channel, and the colored circles are the average observed salinities. The
model tends to over-intrude near station 3 but generally captures the temporal and spatial
variability and stratification well.

The overall statistics of the salinity and temperature are summarized in the form of target

diagrams (Fig. 9 and 10). The x-axis shows the unbiased RMSE (i.e. with mean removed) scaled
by the standard deviation of the observation, with positive values (x>0) indicating that the model
standard deviation over-estimates that of the observation, and vice versa. The y-axis shows the
model bias scaled by the standard deviation of the observation. The RMSE’s are all within 2 ppt
and 2°C, which are small compared to the standard deviation of the salinity and temperature data
used to validate the model.

Based on these results, the model is deemed to have sufficient skill and can be used to assess the
impact of channel dredging.
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Figure 6: Comparison of along-channel velocity profiles at 4 NOAA stations at multiple depths. (a) Station
location; (b) CB0102; (c) CB0301; (d) CB0402; () CB0601. ‘ADCP’ is the observed velocity and ‘Base’ is the
model result.
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Figure 9: Target diagrams of salinity skill for (a) lower Bay; (b) James River; (c) Elizabeth River.
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Figure 10: Target diagrams of temperature skill for (a) lower Bay; (b) James River; (c) Elizabeth River.
See Fig. 9 for detailed explanations.

4. The scenarios runs results

All scenarios considered in this project are listed in Figure 11. The main differences between
‘Base 1’ (existing condition) and ‘Base 2’ (future without project) are the Craney Island
Eastward Expansion (CIEE) built-out and removal of NIT piers near the entrance to Elizabeth
River. Scenarios ‘3-1°,’4-1" and ‘5-1" are based on Base 1, with dredging in different stretches;
‘5-1’ is essentially a combination of ‘3-1” and ‘4-1°. Similarly, Scenarios ‘3-2°,’4-2” and 5-2’
are based on Base 2, with dredging in different stretches.

To assess the salinity change, we present the averaged differences for bottom and surface
salinity, both in plan view and also along 2 channel transects. Time series of comparisons can be
found in project archive. We first compare all scenarios to ‘Base 1°, and the time average is done
from 2010-2013. Note that it might be more appropriate to compare the ‘future with project’
scenarios (e.g., ‘3-2” etc) to Base 2, but we use Base 1 as the basis of comparisons here so one
can see the changes in each scenario from the current condition. By doing so, the comparisons
with Base 2 can also be inferred from the ‘difference of the difference’ (e.g., ‘4-2’ — ‘Base 2’ =
[‘4-2> — ‘Base 1’] — [‘Base 2° — ‘Base 1°]). Fig. 34 also shows direct comparisons between *-2’
scenarios and Base 2.

Between Base 2 and Base 1, most of larger salinity differences occur near the dredged access
channel (from ~5m to ~15m); salinity differences are much smaller elsewhere (~0.1 ppt or less)
(Fig. 12). As in all scenarios, the bottom salinity exhibits more channelized pattern than the
surface salinity.

For the rest of comparisons, we note that scenarios ‘4-X’ (where X=1, 2) show smallest changes
from ‘Base 1°, followed by scenarios ‘3-X’; Scenarios ‘5-X’, which combine the bathymetry
changes from ‘3-X’ and ‘4-X’, show the largest changes from ‘Base 1’ (Figs. 13-18). Salinity
increases from scenarios ‘Y-2’ (where Y=3,4,5) are larger than from scenarios ‘Y-1’, as the
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former also incorporate the bathymetry changes near the entrance of Elizabeth River etc.
Therefore the largest changes (from ‘Base 1) are found in scenario ‘5-2’.

The salinity increases along 2 along-channel transects in James and Elizabeth Rivers reveal that
the gravitational circulation is generally enhanced with channel dredging, especially so near the
mesohaline regions (Figs. 19-32). Since the strength of the gravitational circulation is a function
of freshwater inflow, seasonal variability of salinity changes are seen in all transects. This is
especially obvious in Elizabeth River, where the largest increases of 1-2 ppt are found in most
parts of Elizabeth River during winter and spring months with large river discharge from
upstream of James River (Dec-Jan, April-May). As a result, the salt intrusion via ship channel
from the bottom layer is the strongest which combined with freshwater discharge sets up both the
horizontal and vertical salinity gradient. The differences in the salinity increase over time
suggest that the increase is correlated to stratification; in the asymptotic case of no freshwater
inflow/stratification, channel deepening would not lead to any change in salinity as the water is
uniformly of marine origin. This seasonal salinity increase can change the location of the limit
of salt intrusion and turbidity maximum and enhance the flushing time through the strengthening
of the gravitational circulation and thus impact the water quality (c.f. the water quality
assessment report).

It should be emphasized that the salinity increases are mostly confined in the vicinity of the
project area in the lower James River and Elizabeth River and the impact on the rest of the Bay is
much smaller (<0.1 ppt). The largest change is found in Elizabeth River (especially during
spring, winter and high flow months), followed by lower James River; and outside these regions
the changes are mostly negligible (Figs. 12-18). Similar pattern may be inferred for DO as the
latter is closely related to the density stratification. When the Southern Branch is dredged, the
salinity changes in the Elizabeth River are found intruding all the way upstream of the Southern
Branch (e.g., Figs. 18, 32), suggesting a rather efficient connectivity with the James River.

The overall statistics of salinity changes in the 3 regions are summarized in Figs. 33 & 34. In
general, the 3 scenarios built on ‘Base 2’ result in larger salinity increase than those built on
‘Base 1°. Consistent with the results above, the salinity increase is smallest in ‘4-X’, followed by
‘3-X” and ‘5-X’. The maximum change as found in ‘5-2” in Elizabeth River is ~0.6 ppt (but can
reach 2 ppt as mentioned above). The 2" largest increase is found in the James River (~0.2 ppt).
The smallest increase is found in the lower Bay area, with ~0.1 ppt on average. To put these
values in perspective, the natural variability in salinity in lower Bay, James River and Elizabeth
River, expressed as the standard deviations of the observed salinity, are 3, 2.4 and 2.3 ppt
respectively. We also remark that even the largest increase in salinity is within the model
uncertainty (since the RMSE is ~2ppt). The fact that the largest relative change occurs in the
Elizabeth River is not surprising because the bathymetry/geometry alteration is the greatest at
CIEE.

This report did not consider the impact of proposed 3rd crossing on “Future Without Project”
condition. However, we are engaged in another project that assesses the impact of proposed 3rd
crossing in the lower Hampton Roads area, and the results also suggest only localized impact (up
to 1.5 ppt) near the crossings and minor impact (~0.1 ppt) in all areas 4 km away from the new
crossings. On a global level, the 95th percentile values of the changes in hydrodynamic variables
are shown to be within 2% of the existing condition, thus suggesting a relatively minor impact.
Therefore it seems reasonable to exclude the 3rd Crossing detail from the “Future Without
Project” condition.
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Runs

Scenario

Description

" Norfolk
Harbor
Deepened

So Branch
Deepened

1- Baseline
— Existing
Conditions

Current Without-project conditions/Baseline
Includes:
#  CIEE with the 2 cross dikes (as is conditions)— no fill
between the dikes, or any dredging of the access
channel

Mo

Mo

2 -Baseline -
Future
Without
Project
Conditions

Future without-project
Includes consideration of:
*  CBBT —TsC parallel tunnel
*+  HRBT — parallel tunnel
+ 3~ Crossing/ Patriots Crossing
*  NIT Piers 1 and 2 removed, with dredged area to -50°
e CIEE full build out
MNote: VIMS will provide memo/input detailing how above is
being taken into consideration.

Mo

Mo

31

Exist Conditions with deepened NH channel

With Project Scenario that includes a deepening of the Norfolk
Harber and Channels without the So Branch of the Elizabeth
River, using existing conditions in Run 1.

Yes

No

3-2

Future Conditions with deepened NH channel

With Project Scenario that includes a deepening of the Norfolk
Harbor and Channels without the So Branch of the Elizabeth
River deepened, using future conditions noted in Run 2.

Yes

Mo

4-1

Exist Conditions with deepened $B channel

With Project Scenario that includes a despening of the So
Branch of the Elizabeth River without the Norfolk Harbor and
Channels using existing conditions in Run 1.

Mo

Yes

4-2

Future Conditions with deepened SB Channel

With Project Scenario that includes a despening of the So
Branch of the Elizabeth River without the Norfolk Harbor
deapened, using future conditions noted in Run 2.

Mo

Yes

5-1

Exist Conditions with deepened NH & 5B channels

With Project Scenario that includes a despening of both the
Morfolk Harbor and Channels and the So Branch of the Elizabeth
River using existing conditions in Run 1.

Yes

Yes

5-2

Future Conditions with deepened NH & 5B Channel

With Project Scenario that includes a deepening of both the So
Branch of the Elizabeth River and the Norfolk Harbor, using
future conditions noted in Run 2.

Yes

Yes

Figure 11:

Description of simulation scenarios.
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Figure 12: Time-averaged salinity differences (from 2010-2013) between Base 2 and Base 1 at (a) bottom and
(b) surface.
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Figure 13: Time-averaged salinity differences between Scenario ‘3-1° and Base 1 at (a) bottom and (b)
surface.
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Figure 14: Time-averaged salinity differences between Scenario ‘3-2’ and Base 1 at (a) bottom and (b)
surface.

18



—
Q
e

O
wn

U

O O =
® © O

0O 0O 0O O O O O O
O - N W b OO N

. EEEEEEEN

—
(=3
Sewret

PSU

10
09
08
07
06
05
04
03
02
0.1
00

. EEEEEEEN |

Figure 15: Time-averaged salinity differences between Scenario ‘4-1 and Base 1 at (a) bottom and (b)
surface.
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Figure 16: Time-averaged salinity differences between Scenario ‘4-2° and Base 1 at (a) bottom and (b)

surface.
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Figure 17: Time-averaged salinity differences between Scenario ‘5-1° and Base 1 at (a) bottom and (b)

surface.
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Figure 18: Time-averaged salinity differences between Scenario ‘5-2° and Base 1 at (a) bottom and (b)
surface.
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Figure 19: Averaged salinity differences (at surface and bottom) between Base 2 and Base 1 along a transect
from lower Bay into James River. See the 1% panel for the transect location and corresponding observation
stations. Differences are shown every 3 months and the averaging is done from 2010-2013.
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Figure 20: Averaged salinity differences (at surface and bottom) between Base 2 and Base 1 along a transect
from Elizabeth River into James River. See the 1% panel for the transect location and corresponding
observation stations. Differences are shown every 3 months.
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Figure 21: Averaged salinity differences (at surface and bottom) between ‘3-1° and Base 1 along a transect
from lower Bay into James River. See Fig. 19 for the transect location. Differences are shown every 3 months.
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Figure 22: Averaged salinity differences (at surface and bottom) between ¢3-1> and Base 1 along a transect
from Elizabeth River into James River. See Fig. 20 for the transect location. Differences are shown every 3
months.
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Figure 23: Averaged salinity differences (at surface and bottom) between ‘3-2° and Base 1 along a transect
from lower Bay into James River. See Fig. 19 for the transect location. Differences are shown every 3 months.
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Figure 24: Averaged salinity differences (at surface and bottom) between ‘3-2> and Base 1 along a transect
from Elizabeth River into James River. See Fig. 20 for the transect location. Differences are shown every 3
months.
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Figure 25: Averaged salinity differences (at surface and bottom) between ‘4-1° and Base 1 along a transect
from lower Bay into James River. See Fig. 19 for the transect location. Differences are shown every 3 months.
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Figure 26: Averaged salinity differences (at surface and bottom) between ‘4-1’ and Base 1 along a transect
from Elizabeth River into James River. See Fig. 20 for the transect location. Differences are shown every 3
months.
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Figure 27: Averaged salinity differences (at surface and bottom) between ‘4-2° and Base 1 along a transect
from lower Bay into James River. See Fig. 19 for the transect location. Differences are shown every 3 months.
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Figure 28: Averaged salinity differences (at surface and bottom) between ‘4-2° and Base 1 along a transect
from Elizabeth River into James River. See Fig. 20 for the transect location. Differences are shown every 3
months.
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Figure 29: Averaged salinity differences (at surface and bottom) between ‘5-1° and Base 1 along a transect
from lower Bay into James River. See Fig. 19 for the transect location. Differences are shown every 3 months.
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Figure 30: Averaged salinity differences (at surface and bottom) between ‘5-1° and Base 1 along a transect
from Elizabeth River into James River. See Fig. 20 for the transect location. Differences are shown every 3
months.
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Figure 31: Averaged salinity differences (at surface and bottom) between ‘5-2° and Base 1 along a transect
from lower Bay into James River. See Fig. 19 for the transect location. Differences are shown every 3 months.

49



14 = | —— base1 surface
— base1 bottom

135

5-2 surface
5-2 bottom

10.5

Jan-Mar

18

17.5

17

16.5

16

15.5

15

14.5

Distance (km)

50



B 5 8 9 1 13 1
Distance (km)

SBES SBE2 ELEO1 ELDO1 ELI2

I 1 ] 1 I ] Ll I U L] 1 I ]

19.5

19

18.5

18

17.5

1 2 3 < 5 6 7 8 9 10 1 1 13 1
Distance (km)

SBES SBE2 ELEO1 ELDO1 ELI2

Figure 32: Averaged salinity differences (at surface and bottom) between ‘5-2° and Base 1 along a transect
from Elizabeth River into James River. See Fig. 20 for the transect location. Differences are shown every 3
months.
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Base 2 vs Base 1 (3-1) vs Base 1
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Lower Bay 0.005 0.002 Lower Bay 0.0017 0.018

JamesR 0.046 0.079 JamesR 0.099 0.081

ElizabethR 0.222 0.266 Elizabeth R 0.44 0.41
(4-1) vs Base 1 (5-1) vs Base 1
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LowerBay  0.000677 0.000076 LowerBay  0.002 0.018
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ElizabethR  0.085824 0.073198 ElizabethR  0.515 0.474

Figure 33: Summary of Absolute Mean Difference for surface and bottom salinity (from 2010-2013) between Base 1 and scenarios.
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Figure 34: Summary of Absolute Mean Difference for surface and bottom salinity (from 2010-2013) between ‘*-2’ scenarios and Base 2.
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5. Summary

We have validated SCHISM for lower Chesapeake Bay with higher resolution used in the project
area. The simulated elevations, depth-averaged velocity, salinities, and temperatures in the lower
Bay, James River and Elizabeth River region have an averaged RMSE of 6¢cm, 8cm/s, <2 ppt,
<2°C respectively, and the model captured key processes (salt intrusion, periodic stratification-
destratification) well.

The model is then applied to study the response from various scenarios under the channel
dredging project. Results from 7 scenarios (‘Base 2°, 3-1°,°3-2°,°4-1°,°4-2°°5-1°,°5-2") are
compared with those from the existing condition (‘Base 1’ or ‘Base 2’ respectively). We found
that channel dredging generally enhances gravitational circulation (i.e. 2-layer circulation)
especially near the mesohaline region, and ‘5-2° generated the largest response among all
scenarios, with salinity change exceeding 2 ppt in most parts of Elizabeth River during Jan-
March. Also, when compared to existing condition ‘Base 1°, scenarios derived from the ‘future
conditions’ (’3-2°,’4-2’ and ‘5-2”) led to larger salinity increases than scenarios derived from the
‘existing conditions’ (°3-17,’4-1" and ‘5-1°). However, the increases are generally small (~0.1
ppt) in the rest of Bay (with a distance exceeding ~30km from the project area) and therefore
relatively localized. We also remark that even the largest increase in salinity is within the model
uncertainty.
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